Package: power.transform 1.0.0

Alex Zwanenburg

power.transform: Location and Scale Invariant Power Transformations

Location- and scale-invariant Box-Cox and Yeo-Johnson power transformations allow for transforming variables with distributions distant from 0 to normality. Transformers are implemented as S4 objects. These allow for transforming new instances to normality after optimising fitting parameters on other data. A test for central normality allows for rejecting transformations that fail to produce a suitably normal distribution, independent of sample number.

Authors:Alex Zwanenburg [aut, cre], Steffen Löck [aut], German Cancer Research Center [cph]

power.transform_1.0.0.tar.gz
power.transform_1.0.0.zip(r-4.5)power.transform_1.0.0.zip(r-4.4)power.transform_1.0.0.zip(r-4.3)
power.transform_1.0.0.tgz(r-4.4-any)power.transform_1.0.0.tgz(r-4.3-any)
power.transform_1.0.0.tar.gz(r-4.5-noble)power.transform_1.0.0.tar.gz(r-4.4-noble)
power.transform_1.0.0.tgz(r-4.4-emscripten)power.transform_1.0.0.tgz(r-4.3-emscripten)
power.transform.pdf |power.transform.html
power.transform/json (API)
NEWS

# Install 'power.transform' in R:
install.packages('power.transform', repos = c('https://oncoray.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/oncoray/power.transform/issues

On CRAN:

3.81 score 1 scripts 292 downloads 17 exports 3 dependencies

Last updated 1 months agofrom:a2c584531a. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 22 2024
R-4.5-winOKNov 22 2024
R-4.5-linuxOKNov 22 2024
R-4.4-winOKNov 22 2024
R-4.4-macOKNov 22 2024
R-4.3-winOKNov 22 2024
R-4.3-macOKNov 22 2024

Exports:assess_transformationcreate_transformer_skeletonfind_transformation_parametersget_lambdaget_residualsget_scaleget_shiftget_transformation_methodhuber_estimateplot_qq_plotplot_residual_plotpower_transformragnrevert_power_transformset_lambdaset_scaleset_shift

Dependencies:data.tablenloptrrlang

Readme and manuals

Help Manual

Help pageTopics
Assess normality of transformed dataassess_transformation
Create transformation object skeletoncreate_transformer_skeleton
Set transformation parametersfind_transformation_parameters
Get lambda valueget_lambda get_lambda,transformationBoxCox-method get_lambda,transformationPowerTransform-method get_lambda,transformationYeoJohnson-method
Compute residuals of transformation to normalityget_residuals
Get scale valueget_scale get_scale,transformationBoxCox-method get_scale,transformationPowerTransform-method get_scale,transformationYeoJohnson-method
Get shift valueget_shift get_shift,transformationBoxCox-method get_shift,transformationPowerTransform-method get_shift,transformationYeoJohnson-method
Get transformation methodget_transformation_method get_transformation_method,transformationPowerTransform-method
Huber M-estimatehuber_estimate
Create Q-Q plotplot_qq_plot
Create residual plotplot_residual_plot
Transform valuespower_transform
power.transform: Transform Data to Normality using Power Transformationspower.transform-package power.transform
Random Values from the Asymmetric Generalised Normal Distributionragn
Revert transformationrevert_power_transform
Set lambda valueset_lambda set_lambda,transformationBoxCox-method set_lambda,transformationPowerTransform-method set_lambda,transformationYeoJohnson-method
Set scale valueset_scale set_scale,transformationBoxCox-method set_scale,transformationPowerTransform-method set_scale,transformationYeoJohnson-method
Set shift valueset_shift set_shift,transformationBoxCox-method set_shift,transformationPowerTransform-method set_shift,transformationYeoJohnson-method
Box-Cox transformation objecttransformationBoxCox-class transformationBoxCoxInvariant-class
No transformation objecttransformationNone-class
Generic transformation objecttransformationPowerTransform-class
Yeo-Johnson transformation objecttransformationYeoJohnson-class transformationYeoJohnsonInvariant-class